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Different cascade speeds for longitudinal and transverse velocity increments
of small-scale turbulence
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We address the problem of differences between longitudinal and transverse velocity increments in isotropic
small scale turbulence. The relationship of these two quantities is analyzed experimentally by means of
stochastic Markovian processes leading to a phenomenological Fokker-Planck equation from which a gener-
alization of the Karman equation is derived. From these results, a simple relationship between longitudinal and
transverse structure functions is found which explains the differences in the scaling properties of these two
structure functions.
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Substantial details of the complex statistical behavior of In this Rapid Communication, we focus on a different
fully developed turbulent flows are still unknowi—4]. One  approach to characterize spatial multipoint correlations via
important task is to understand intermittency, i.e., findingmultiscale statistics. Recently, it has been shown that it is
unexpected frequent occurrences of large fluctuations of thpossible to get access to the joint probability distribution
local velocity on small length scales. In the last years, the[u(ry),u(ry),...,u(r,)] via a Fokker-Planck equation,
differences of velocity fluctuations in different spatial direc- which can be estimated directly from measured {&8a-21.
tions have attracted considerable attention as a main issue Bbr a detailed presentation sg]. Knowing joint probabil-
the problem of small scale turbulence, see for exampléty distributions is definitely more general than the above-
[5-13. For local isotropic turbulence, the statistics of veloc-mentioned analysis by structure functions, which character-
ity increments[v(x+r)—-v(x)]e as a function of the length ize only the simple scale statistiggu(r)] or p[v(r)]. The
scaler is of interest. Hereg denotes a unit vector. We denote Fokker-Planck method has attracted interest and was applied
with u(r) the longitudinal incrementg is parallel tor) and  to different problems of the complexity of turbulence like
with v(r) transverse incremente is orthogonal tar). energy dissipatiofi23—25, universality turbulenc¢26] and

In a first step, this statistics is commonly investigated byothers[11,27-31. The Fokker-Planck equatiaihere written
means of its moment&"(r)) or (v"(r)), the so-called veloc- for vector quantitiesreads as
ity structure functions. Different theories and models try to
explain the shape of the structure functig@s Most of the d . B L @
works examine the scaling of the structure functidu?) —rgp(u,r|u0,ro): -2 DY+ X ——Dj

n o ] i=1 i FER I
«rél, and try to explain intermittency, expressed by
-n/3 the deviation from the Kolmogorov theory of 1941 Xp(u,r|ug,ro). (2

[14,15. For the corresponding transverse quantity we write

<v”>ocrs‘?. There is strong evidence that there are fundameng—I denotes the components of the incrementve fix i =1 for

o A _ ) usual one: instead of the tintethe independent variable is
some contradictions initially, there is evidence now that thehe scale variable. The minus sigh appears from the devel-
transverse scaling shows stronger intermittency even for hingment of the probability distribution from large to small

Reynolds numbert9,16]. o _scales. In this sense, this Fokker-Planck equation may be
A baS|c, quatlon which relates both quantities is derivedsgnsidered as an equation for the “dynamics of the cascade,”
by von Karman and Howarthl7]. Assuming incompress- \yhich describes how the increments evolve from large to

ibility and isotropy, the so callefirst KArman equations small scales under the influence of determini¢Bé?) and
obtained: noisy (D?) forces. The whole equation is multiplied without
9 loss of generality by to get power laws for the moments in
- rE<U2> = 2u?) - 2(v?). (1)  a more simple wajone may also compare this choice with
the structure of Eq(1)]. Both coefficients, the so-called drift
Relations between structure functions become more antermD{"(u,r) and diffusion ternDi(jz)(u,r), can be estimated
more complicated with higher order, including also pressuradirectly from the measured data using its mathematical defi-
terms[13,18. nition, see Kolmogoroy32] and[22,30,33,3% With the no-
tation Au;(r,Ar):=u;(r—Ar)—u;(r) the definitions read as:

* . . . . . r
Electronic addre;s. peinke@uni-oldenburg.de Di(l)(u,r) = lim _<Aui(rrAr)>|u(r)
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FIG. 2. Even longitudinal structure functions up to order 6 cal-
culated directly from datdsymbol9 are compared to the results
v obtained from numerical solutions of E@), using the experimen-
tally estimated coefficients of the Fokker-Planck equatisalid
FIG. 1. Diffusion coefficienD(lzl)(u,v,r) for r=L/4 estimated lines; see also Eq5) and Fig. 2.
from experimental data. Note that the quadratic contributions are
responsible for inte_rm_ittency. The asymmetrytjfdi_r_ectic_)n i_s &~ gpatial resolution resolves well the Taylor length
Iateq to Fhe nonva.nls.hlng skewness of the probability distribution of=4_85 mm. The integral length is=137 mm.
longitudinal velocity increments.

From these experimental data the drift and diffusion co-
efficients are estimated according to E¢3) as described
in Ref. [34], see also[35]. As an example, the diffusion
coefficientD\?(u,v,r=L/4) is shown in Fig. 1. To use the
results in an analytical way, the drift and diffusion coefficient
where(-)|, denotes the conditional average for fixed can be well approximated by the following low dimensional
variablesu(r) andu(r), relating the longitudinal and trans- functions as it is shown below:
verse velocity increments to each other. The resulting

- : s A DP(u,v,r) = d¥(r)u

Fokker-Planck equation describes the joint probability distri- 1A 1
bution p[u(ry),v(ry);...;u(ry),v(r,)]. Knowing the Fokker-

DW= fim ﬁ(Aui(r,Ar)Auj(r,Ar))|u(,), )

r—0

Planck equation, hierarchical equations for any structure D(zl)(u,v,r) =dy(nv
function(f(u,v))=/ff(u,v)p(u,v,r)dudv can be derived by
Integrating Eq(2): D(U,v,) = dyyr) + diy(r)u+ di(r) U2 + dg3()o?
J _
=1 U =+ mu™ "D (u,w,) + (UMD (U, 1) DI(U,0,1) = dyolr) + diy(r)u + ds(r)U? + dss(r)o?
mim-1 v
+ =D 2D B w,0,) DE(U0,1 = i) + dnu+ O, ()
n(n-1) In order to show that the Fokker-Planck equation with these
+ —(umv“‘zD(zzz)(u,v,r» drift and diffusion coefficients can well characterize the in-
2 crement’s statistics, one has to verify that the evolution pro-
+ mrKum‘lv”‘lD(lzz)(u,v,r», (4) cess ofu(r) andu(r) is a Markov process and that white and

Gaussian distributed noise is involved. The Markov property

which we propose as a generalization of the Karmarfan be tested directly via its definition by using conditional
equation. probability densitieg22] or by looking at the correlation of
Next, we describe the experiment used for the subsequefite noise of the Langevin equatig@l]. For our case we
analysis. The data set consists of 1x2B0® samples of the have verified that the one-dimensional processes of the lon-
local velocity measured in the wake behind a cylingeoss ~ ditudinal and transverse increments are Markoy#0j, thus
section:D=20 mm at a Reynolds number of 13 200 and a the two-dimensional processes should be Markovian, as well
Taylor-based Reynolds number of 180. The measuremen83]- As an alternative approach to verify the validity of the
was done with an X-hotwire placed 60 cylinder diametersFokker-Planck equation we have solved numerically the hi-
behind the cylinder. The componanis measured along the erarchical Eq(4) for (u™) using the above-mentioned coef-
mean flow direction, the componentransverse to the mean ficients. To close the equation, we have used the moment
flow is orthogonal to the cylinder axis. We use Taylor's hy- (U™ ??) from the experimental data. In Fig. 2 the integrated
pothesis of frozen turbulence to convert time lags into spatialongitudinal structure functions are given in comparison with
displacementgdegree of turbulence 6p0With the sampling the structure functions directly calculated from the datih
frequency of 25 kHz and a meanvelocity of 9.1 m/s, then=2, 4, 6, andn=0). We take these results as the evidence
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FIG. 3. The expansion coefficients of the drift and diffusion
coefficients in dependence of the scal@he abscissa are rescaled <|u3|>
for the transverse coefficients. The corresponding longitudinal and
transverse coefficients coincide which each oflagapart from the FIG. 5. The fourth order longitudinglx) and transversg¢-+)
intermittency termgb). structure function is plotted againgt®|), the third moment of the

longitudinal increments’ modulusESS ploy. If the abscissa of the
etlransverse structure function is rescaled by a factor of 2/3, both

curves fall one upon the othg¢squares The differences between
the exponents also vanish.

that the Fokker-Planck equation characterizes the data w
and can be used for further interpretations.

For the drift coefficient, which is the deterministic part of
the cascade dynamics, the process decouples for the different . . o
directions, see Eq(5). The drift and diffusion coefficients The observed phenomena are consistent with Karman
are symmetric with respect ©— —v. In contrast to the sta- Ed- (1), if the Karman equation is interpreted as a Taylor
tistics of the longitudinal increments, the transverse is symexpansion
metric and show for example no skewnés®=0. Further-
more, quadratic terms occur in the diffusion coefficients. 20\ — /112 19, ,

Intermittency results from the quadratic terdf§ andd3}, all @AD) =) + 1o () ©)
other terms act against intermittency.

Ther dependence of related longitudinal and transverse
coefficients(d} and dj, etc) coincides if the abscissa are z<u2<r 4 lr)> - <u2(§r>>. (7)
rescaledmion(r) ~ ~ dyansd 21), S€€ Fig. 3. The only exception 2 2
is the coefficientdyy(r), whereasd;j(r)=dj;(r)=dy5(r)
~const. We interpret this phenomenon as a faster cascadde approximation is valid within 2% almost independent
for the transverse increments. It can be seen from the hiera@f r.
chical Eq.(4) that this property goes over into structure func-  Next, let us suppose that the structure functions scale with
tions of arbitrary even ordexv"(r))=)u"(3r)). Only the  a power law,(v"(r))=clrét and (u"(r))=créT, even though
small coefficientsdy, anddy, break this symmetry, because our measured structure functions are still far away from
they belong to different odd, and therefore small, momentsshowing an ideal scaling behavif26]. With exemption of
In Fig. 4, the structure functions of orders 2, 4, and 6 arehe differences betweedtj(r) and ds5(r), we can relate the
plotted with respect to this rescaled lengthThe structure structure functions according to the abovementioned rescal-
functions are normalized bip")* = (a")(n/2)! /n!uy, With ing: (u"(r)y={u" ( )= Ctrgt_cl(z )§| We end up with the

« eitheru or v. o
relation¢'=¢{ and -, o =(2 ) . Note, that the"-constants are

related to the Kolmogorov constants. Foe2 and 4 we
obtain ¢?/c?~1.33 and c'/c'~1.72, which deviates
less than 3% from the value of/c?=4/3 andc;/c'=16/9
given in[36].
At last we discuss the use of extended self-similgr&y]
(ESS with respect to transverse velocity components. In
Refs.[8,38,39 the authors plotyv") against the longitudinal
structure functior(|u®|) and obtain that the transverse expo-
nents is smaller than the longitudinal og€\< ¢1'. In Fig. 5
the fourth structure functions are plotted agaifisi|), which
shows clearly that ;< &}. If the transverse structure func-
tion is plotted as a function 0‘i‘|u3 |> this discrepancy
FIG. 4. Longitudinal(symboly and corresponding transverse Vanishes. Notice that these propertles are due to a nonexist-
(lines) structure functions. The arrows point from the structureing scaling behavior. It is evident that our rescaling does not
function (v"(r)) to the corresponding structure functi¢el(2r/3))  change the exponents in the case of pure scaling behavior,
with contracted abscissa. The transverse structure functions with &hich is approached as the Reynolds number is increased as
contracted abscissa are close to the longitudinal ones. shown in Ref[39].
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To conclude this Rapid Communication, we have pre-These coefficients may be a source of differences for the two
sented experimental evidence that the statistics of longitudidirections, but for our data analyzed here this effect is small.
nal and transverse increments is dominated by a difference in Finally, we could show that our findings on the rescaling
the “speed of the cascade” expressed byritiependence. are consistent with the Karman equation and that longitudi-
Rescalmg the dependence of the transverse increments by aa| and transverse Kolmogorov constants of the structure
factor § fades the main differences away. Thus, the longitu-functions up to order four can be related consistently with
dinal and transverse structure functions up to order 6 coingyr results.
cide well. A closer look at the coefficients of the stochastic
process estimated from our data shows that the multiplicative The authors acknowledge fruitful discussions with A.
noise term for the transverse incremedf$ and the symme- Naert, R. Friedrich, and teamwork with M. Karth. This work
try breaking termgd}; anddj, do not follow this rescaling. was supported by the DFG Grant No. Pe-478/9.
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