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We address the problem of differences between longitudinal and transverse velocity increments in isotropic
small scale turbulence. The relationship of these two quantities is analyzed experimentally by means of
stochastic Markovian processes leading to a phenomenological Fokker-Planck equation from which a gener-
alization of the Kármán equation is derived. From these results, a simple relationship between longitudinal and
transverse structure functions is found which explains the differences in the scaling properties of these two
structure functions.
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Substantial details of the complex statistical behavior of
fully developed turbulent flows are still unknown[1–4]. One
important task is to understand intermittency, i.e., finding
unexpected frequent occurrences of large fluctuations of the
local velocity on small length scales. In the last years, the
differences of velocity fluctuations in different spatial direc-
tions have attracted considerable attention as a main issue of
the problem of small scale turbulence, see for example
[5–13]. For local isotropic turbulence, the statistics of veloc-
ity incrementsfvsx+r d−vsxdge as a function of the length
scaler is of interest. Here,e denotes a unit vector. We denote
with usrd the longitudinal increments(e is parallel tor ) and
with vsrd transverse increments(e is orthogonal tor ).

In a first step, this statistics is commonly investigated by
means of its momentskunsrdl or kvnsrdl, the so-called veloc-
ity structure functions. Different theories and models try to
explain the shape of the structure functions[2]. Most of the
works examine the scaling of the structure function,kunl
~ rj l

n
, and try to explain intermittency, expressed byj l

n

−n/3 the deviation from the Kolmogorov theory of 1941
[14,15]. For the corresponding transverse quantity we write

kvnl~ rj t
n
. There is strong evidence that there are fundamen-

tal differences in the statistics of the longitudinal increments
usrd and transverse incrementsvsrd. Whereas there were
some contradictions initially, there is evidence now that the
transverse scaling shows stronger intermittency even for high
Reynolds numbers[9,16].

A basic equation which relates both quantities is derived
by von Kármán and Howarth[17]. Assuming incompress-
ibility and isotropy, the so calledfirst Kármán equationis
obtained:

− r
]

]r
ku2l = 2ku2l − 2kv2l. s1d

Relations between structure functions become more and
more complicated with higher order, including also pressure
terms[13,18].

In this Rapid Communication, we focus on a different
approach to characterize spatial multipoint correlations via
multiscale statistics. Recently, it has been shown that it is
possible to get access to the joint probability distribution
p[usr1d ,usr2d , . . . ,usrnd] via a Fokker-Planck equation,
which can be estimated directly from measured data[19–21].
For a detailed presentation see[22]. Knowing joint probabil-
ity distributions is definitely more general than the above-
mentioned analysis by structure functions, which character-
ize only the simple scale statisticsp[usrd] or p[vsrd]. The
Fokker-Planck method has attracted interest and was applied
to different problems of the complexity of turbulence like
energy dissipation[23–25], universality turbulence[26] and
others[11,27–31]. The Fokker-Planck equation(here written
for vector quantities) reads as

− r
]

]r
psu,r uu0,r0d = S− o

i=1

n
]

]ui
Di

s1d + o
i,j=1

n
]2

]ui]uj
Dij

s2dD
3psu,r uu0,r0d. s2d

(i denotes the components of the incrementu, we fix i =1 for
the longitudinal andi =2 for the transverse increments.) This
representation of a stochastic process is different from the
usual one: instead of the timet, the independent variable is
the scale variabler. The minus sign appears from the devel-
opment of the probability distribution from large to small
scales. In this sense, this Fokker-Planck equation may be
considered as an equation for the “dynamics of the cascade,”
which describes how the increments evolve from large to
small scales under the influence of deterministicsDs1dd and
noisy sDs2dd forces. The whole equation is multiplied without
loss of generality byr to get power laws for the moments in
a more simple way[one may also compare this choice with
the structure of Eq.(1)]. Both coefficients, the so-called drift
termDi

s1dsu ,rd and diffusion termDij
s2dsu ,rd, can be estimated

directly from the measured data using its mathematical defi-
nition, see Kolmogorov[32] and[22,30,33,34]. With the no-
tation Duisr ,Drdªuisr −Drd−uisrd the definitions read as:

Di
s1dsu,rd = lim

Dr→0

r

Dr
kDuisr,Drdluusrd
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Dij
s2dsu,rd = lim

Dr→0

r

2Dr
kDuisr,DrdDujsr,Drdluusrd, s3d

wherek·lux denotes the conditional average for fixedx.
Here we extend the analysis to a Markov process for two

variablesusrd and vsrd, relating the longitudinal and trans-
verse velocity increments to each other. The resulting
Fokker-Planck equation describes the joint probability distri-
bution pfusr1d ,vsr1d ; . . . ;usrnd ,vsrndg. Knowing the Fokker-
Planck equation, hierarchical equations for any structure
function kfsu,vdl=eefsu,vdpsu,v ,rddudv can be derived by
integrating Eq.(2):

− r
]

]r
kumvnl = + mkum−1vnD1

s1dsu,v,rdl + nkumvn−1D2
s1dsu,v,rdl

+
msm− 1d

2
kum−2vnD11

s2dsu,v,rdl

+
nsn − 1d

2
kumvn−2D22

s2dsu,v,rdl

+ mnkum−1vn−1D12
s2dsu,v,rdl, s4d

which we propose as a generalization of the Kármán
equation.

Next, we describe the experiment used for the subsequent
analysis. The data set consists of 1.253108 samples of the
local velocity measured in the wake behind a cylinder(cross
section:D=20 mm) at a Reynolds number of 13 200 and a
Taylor-based Reynolds number of 180. The measurement
was done with an X-hotwire placed 60 cylinder diameters
behind the cylinder. The componentu is measured along the
mean flow direction, the componentv transverse to the mean
flow is orthogonal to the cylinder axis. We use Taylor’s hy-
pothesis of frozen turbulence to convert time lags into spatial
displacements(degree of turbulence 6%). With the sampling
frequency of 25 kHz and a meanvelocity of 9.1 m/s, the

spatial resolution resolves well the Taylor lengthl
=4.85 mm. The integral length isL=137 mm.

From these experimental data the drift and diffusion co-
efficients are estimated according to Eqs.(3) as described
in Ref. [34], see also[35]. As an example, the diffusion
coefficientD11

s2dsu,v ,r =L /4d is shown in Fig. 1. To use the
results in an analytical way, the drift and diffusion coefficient
can be well approximated by the following low dimensional
polynoms, which will be verified by reconstructed structure
functions as it is shown below:

D1
s1dsu,v,rd = d1

usrdu

D2
s1dsu,v,rd = d2

vsrdv

D11
s2dsu,v,rd = d11srd + d11

u srdu + d11
uusrdu2 + d11

vvsrdv2

D22
s2dsu,v,rd = d22srd + d22

u srdu + d22
uusrdu2 + d22

vvsrdv2

D12
s2dsu,v,rd = d12srd + d12

u srdu + d12
uvsrduv. s5d

In order to show that the Fokker-Planck equation with these
drift and diffusion coefficients can well characterize the in-
crement’s statistics, one has to verify that the evolution pro-
cess ofusrd andvsrd is a Markov process and that white and
Gaussian distributed noise is involved. The Markov property
can be tested directly via its definition by using conditional
probability densities[22] or by looking at the correlation of
the noise of the Langevin equation[21]. For our case we
have verified that the one-dimensional processes of the lon-
gitudinal and transverse increments are Markovian[40], thus
the two-dimensional processes should be Markovian, as well
[33]. As an alternative approach to verify the validity of the
Fokker-Planck equation we have solved numerically the hi-
erarchical Eq.(4) for kuml using the above-mentioned coef-
ficients. To close the equation, we have used the moment
kum−2v2l from the experimental data. In Fig. 2 the integrated
longitudinal structure functions are given in comparison with
the structure functions directly calculated from the data(with
n=2, 4, 6, andm=0). We take these results as the evidence

FIG. 1. Diffusion coefficientD11
s2dsu,v ,rd for r =L /4 estimated

from experimental data. Note that the quadratic contributions are
responsible for intermittency. The asymmetry inu-direction is re-
lated to the nonvanishing skewness of the probability distribution of
longitudinal velocity increments.

FIG. 2. Even longitudinal structure functions up to order 6 cal-
culated directly from data(symbols) are compared to the results
obtained from numerical solutions of Eq.(4), using the experimen-
tally estimated coefficients of the Fokker-Planck equation(solid
lines; see also Eq.(5) and Fig. 1).
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that the Fokker-Planck equation characterizes the data well
and can be used for further interpretations.

For the drift coefficient, which is the deterministic part of
the cascade dynamics, the process decouples for the different
directions, see Eq.(5). The drift and diffusion coefficients
are symmetric with respect tov→−v. In contrast to the sta-
tistics of the longitudinal increments, the transverse is sym-
metric and show for example no skewnesskv3l=0. Further-
more, quadratic terms occur in the diffusion coefficients.
Intermittency results from the quadratic termsd11

uu andd22
vv, all

other terms act against intermittency.
The r dependence of related longitudinal and transversed

coefficients(d1
u and d2

v, etc.) coincides if the abscissa are
rescaled:dlongsrd<dtransvs 2

3rd, see Fig. 3. The only exception
is the coefficient d22

vvsrd, whereas d11
uusrd<d11

vvsrd<d22
uusrd

<const. We interpret this phenomenon as a faster cascade
for the transverse increments. It can be seen from the hierar-
chical Eq.(4) that this property goes over into structure func-
tions of arbitrary even order,kvnsrdl<luns 3

2rdl. Only the
small coefficientsd11

u and d22
u break this symmetry, because

they belong to different odd, and therefore small, moments.
In Fig. 4, the structure functions of orders 2, 4, and 6 are
plotted with respect to this rescaled lengthr. The structure
functions are normalized bykanl* = kanlsn/2d ! / n! urms

n , with
a eitheru or v.

The observed phenomena are consistent with Kármán
Eq. (1), if the Kármán equation is interpreted as a Taylor
expansion

kv2srdl = ku2srdl +
1

2
r

]

]r
ku2srdl, s6d

<Ku2Sr +
1

2
rDL =Ku2S3

2
rDL . s7d

The approximation is valid within 2% almost independent
of r.

Next, let us suppose that the structure functions scale with

a power law,kvnsrdl=ct
nrj t

n
and kunsrdl=cl

nrj l
n
, even though

our measured structure functions are still far away from
showing an ideal scaling behavior[26]. With exemption of
the differences betweend11

uusrd andd22
vvsrd, we can relate the

structure functions according to the abovementioned rescal-

ing: kvnsrdl=kuns 3
2rdl=ct

nrj t
n
=cl

ns 3
2rdj l

n

. We end up with the

relationj l
n=j t

n and
ct

n

cl
n = s 3

2
dj l

n

. Note, that thecn-constants are
related to the Kolmogorov constants. Forn=2 and 4 we
obtain ct

2/cl
2<1.33 and ct

4/cl
4<1.72, which deviates

less than 3% from the value ofct
2/cl

2=4/3 andct
4/cl

4=16/9
given in [36].

At last we discuss the use of extended self-similarity[37]
(ESS) with respect to transverse velocity components. In
Refs.[8,38,39] the authors plotkvnl against the longitudinal
structure functionkuu3ul and obtain that the transverse expo-
nents is smaller than the longitudinal one,j t

n,j l
n. In Fig. 5

the fourth structure functions are plotted againstkuu3ul, which
shows clearly thatj t

4,j l
4. If the transverse structure func-

tion is plotted as a function ofkuu3s 3
2rdul, this discrepancy

vanishes. Notice that these properties are due to a nonexist-
ing scaling behavior. It is evident that our rescaling does not
change the exponents in the case of pure scaling behavior,
which is approached as the Reynolds number is increased as
shown in Ref.[39].

FIG. 3. The expansion coefficients of the drift and diffusion
coefficients in dependence of the scaler. The abscissa are rescaled
for the transverse coefficients. The corresponding longitudinal and
transverse coefficients coincide which each other(a) apart from the
intermittency terms(b).

FIG. 4. Longitudinal(symbols) and corresponding transverse
(lines) structure functions. The arrows point from the structure
function kvnsrdl to the corresponding structure functionkvns2r /3dl
with contracted abscissa. The transverse structure functions with a
contracted abscissa are close to the longitudinal ones.

FIG. 5. The fourth order longitudinal(x) and transverse(1)
structure function is plotted againstkuu3u l, the third moment of the
longitudinal increments’ modulus(ESS plot). If the abscissa of the
transverse structure function is rescaled by a factor of 2/3, both
curves fall one upon the other(squares). The differences between
the exponents also vanish.
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To conclude this Rapid Communication, we have pre-
sented experimental evidence that the statistics of longitudi-
nal and transverse increments is dominated by a difference in
the “speed of the cascade” expressed by itsr dependence.
Rescaling ther dependence of the transverse increments by a
factor 2

3 fades the main differences away. Thus, the longitu-
dinal and transverse structure functions up to order 6 coin-
cide well. A closer look at the coefficients of the stochastic
process estimated from our data shows that the multiplicative
noise term for the transverse incrementsd22

vv and the symme-
try breaking termsd11

u and d22
u do not follow this rescaling.

These coefficients may be a source of differences for the two
directions, but for our data analyzed here this effect is small.

Finally, we could show that our findings on the rescaling
are consistent with the Kármán equation and that longitudi-
nal and transverse Kolmogorov constants of the structure
functions up to order four can be related consistently with
our results.
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